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White matter hyperintensities are radiological abnormalities reflecting cerebrovascular dysfunction detectable using MRI. White mat
ter hyperintensities are often present in individuals at the later stages of the lifespan and in prodromal stages in the Alzheimer’s disease 
spectrum. Tissue alterations underlying white matter hyperintensities may include demyelination, inflammation and oedema, but 
these are highly variable by neuroanatomical location and between individuals. There is a crucial need to characterize these white mat
ter hyperintensity tissue alterations in vivo to improve prognosis and, potentially, treatment outcomes. How different MRI measure(s) 
of tissue microstructure capture clinically-relevant white matter hyperintensity tissue damage is currently unknown. Here, we com
pared six MRI signal measures sampled within white matter hyperintensities and their associations with multiple clinically-relevant 
outcomes, consisting of global and cortical brain morphometry, cognitive function, diagnostic and demographic differences and car
diovascular risk factors. We used cross-sectional data from 118 participants: healthy controls (n = 30), individuals at high risk for 
Alzheimer’s disease due to familial history (n = 47), mild cognitive impairment (n = 32) and clinical Alzheimer’s disease dementia 
(n = 9). We sampled the median signal within white matter hyperintensities on weighted MRI images [T1-weighted (T1w), 
T2-weighted (T2w), T1w/T2w ratio, fluid-attenuated inversion recovery (FLAIR)] as well as the relaxation times from quantitative 
T1 (qT1) and T2* (qT2*) images. qT2* and fluid-attenuated inversion recovery signals within white matter hyperintensities displayed 
different age- and disease-related trends compared to normal-appearing white matter signals, suggesting sensitivity to white matter 
hyperintensity-specific tissue deterioration. Further, white matter hyperintensity qT2*, particularly in periventricular and occipital 
white matter regions, was consistently associated with all types of clinically-relevant outcomes in both univariate and multivariate 
analyses and across two parcellation schemes. qT1 and fluid-attenuated inversion recovery measures showed consistent clinical rela
tionships in multivariate but not univariate analyses, while T1w, T2w and T1w/T2w ratio measures were not consistently associated 
with clinical variables. We observed that the qT2* signal was sensitive to clinically-relevant microstructural tissue alterations specific 
to white matter hyperintensities. Our results suggest that combining volumetric and signal measures of white matter hyperintensity 
should be considered to fully characterize the severity of white matter hyperintensities in vivo. These findings may have implications 
in determining the reversibility of white matter hyperintensities and the potential efficacy of cardio- and cerebrovascular treatments.
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Graphical Abstract

Introduction
White matter hyperintensities (WMHs) are areas of higher 
MRI signal within white matter on T2-weighted (T2w) and 
fluid-attenuated inversion recovery (FLAIR) images. 
WMHs are commonly detected in the elderly and are consid
ered to be markers of small vessel disease. Cerebrovascular 
disease burden, often measured with the total WMH volume, 
is increasingly recognized to play an important role in 

cognitive manifestations of Alzheimer’s disease,1-3 with ab
normalities in WMH volume detected up to 20 years before 
Alzheimer’s disease diagnosis.4 Increased WMH volumes 
have also been consistently associated with impaired cogni
tion,5-7 cortical atrophy8-11 and cardiovascular risk fac
tors12-14 in otherwise cognitively normal individuals.

Previous studies have only examined the extent (i.e. vol
ume) of WMHs in relation to adverse outcomes, but not 
the severity of underlying tissue alterations. Importantly, ex 
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vivo histological examinations of microstructural alterations 
within WMHs report heterogeneous tissue alterations,15,16

with demyelination, axonal loss and inflammation being pre
sent at various degrees or even absent.17-20 There is therefore 
a crucial need to better assess the severity of WMH micro
structural alterations in vivo. MRI signals from different 
types of MRI images may serve as a means to assess this sever
ity. While studies have used T1w, T2w, T1w/T2w ratio 
(a non-specific proxy for myelin concentration)21 and FLAIR 
signal to index microstructure,22-24 these measures generally 
lack neurobiological specificity.25 We hypothesize that novel 
quantitative MRI acquisitions directly measuring T1 and 
T2* relaxation times are better suited to characterize WMH 
tissue damage and may offer a more nuanced description of 
WMH severity above and beyond overall volume. In white 
matter, quantitative T1 relaxation time (qT1) is influenced 
by myelin to a larger extent than iron,26 while quantitative 
T2* relaxation time (qT2*) has been linked to iron, myelin 
and fibre orientation.26,27 As such, these metrics are sensitive 
to pathologically-relevant biological properties in the context 
of WMHs. However, it is unknown which MRI measure(s) of 
tissue microstructure would capture clinically-relevant WMH 
tissue damage.

In this study, we compared the clinical associations of MRI 
signal measures of WMH. Leveraging the high variability of 
WMH severity, neurodegeneration and cognitive functioning 
in the Alzheimer’s disease spectrum, we measured six different 
MRI signals within WMHs and the normal-appearing white 
matter (NAWM) in a cross-sectional sample including cogni
tively healthy elderly, participants at high risk of Alzheimer’s 
disease due to familial history, participants with mild cognitive 
impairment and a few participants with clinically-diagnosed 
Alzheimer’s disease totalling 118 subjects. We first assessed if 
the WMH signal trends simply represented deterioration of 
the global white matter, or if these trends were specific to 
WMHs (i.e. different than trends in the NAWM). We then re
lated WMH measures to multiple types of clinical variables 
(cortical and global atrophy, cognition, demographic and 
group differences and cardiovascular risk factors), with the ra
tionale that signal measures sensitive to clinically-meaningful 
variations in underlying WMH tissue alterations would be re
lated to adverse neurobiological and clinical outcomes.

Materials and methods
Participants
Our methodology is outlined in Fig. 1. The data were ac
quired as part of the Alzheimer’s Disease Biomarkers 
(ADB)22,28-30 and PREVENT-AD31,32 cross-sectional co
horts, recruited between 2016 and 2019. Signed informed 
consent from all participants was obtained, and the research 
protocols were approved by the Research Ethics Board of the 
Douglas Mental Health University Institute, Montreal, 
Canada. Summary statistics of demographic and cognitive 
variables before and after quality control (QC) procedures 

(see Supplementary Methods 1) are detailed in Table 1
(both cohorts combined). ANOVAs and chi-squared tests 
were used to assess differences in the samples before (n =  
253) and after (n = 118) QC for continuous and categorical 
variables respectively. No significant differences were ob
served at the P < 0.05 level. A Gantt chart showing the num
ber of exclusions at each QC step is available in 
Supplementary Fig. 1. Of note, approximately half of the ex
clusions are based on missing MRI modalities, with another 
∼30% based on raw MRI QC, and do not reflect failure of 
the image processing methods used.

Data acquisition
Demographics, cognition and cardiovascular 
risk factors
Participants were recruited across the Alzheimer’s disease 
spectrum in four clinically-different groups: healthy controls 
(HC), high risk due to familial history of Alzheimer’s disease 
(FAMHX), mild cognitive impairment (MCI) and 
Alzheimer’s disease dementia. Participants with MCI or 
Alzheimer’s disease were referred to this study after diagno
sis by the clinical team at the McGill Centre for Studies in 
Aging in Montreal, Canada. FAMHX participants were re
cruited by the PREVENT-AD group, had a Clinical 
Dementia Rating of 0 and had at least one parent diagnosed 
with Alzheimer’s disease. HC participants were recruited 
through advertisements in local newspapers targeted to
wards aging populations, Facebook and Kijiji posts. 
Exclusion criteria included psychiatric and intellectual disor
ders, brain damage and concussion, current use of psycho
active substances and contraindications to MRI.

Demographic variables included the body mass index 
(BMI) and the number of APOE-ɛ4 alleles calculated with 
the PCR method33 using the Pyrosequencing protocol re
commended by the manufacturer. Cognitive assessments in
cluded the AD8,34 the Montreal Cognitive Assessment 
(MoCA)35 and the Repeatable Battery for the Assessment 
of Neuropsychological Status (RBANS).36 We acquired the 
self-reported history of alcohol consumption, diabetes, 
high blood pressure (BP), high cholesterol and smoking in 
a binary format (yes or no).

Missing values for demographic, cognitive and risk factor 
variables (see Table 1) were imputed with Random Forest 
imputation using the missForest version 1.5 package in R37

on the complete sample before exclusions based on MRI 
quality control.

MRI acquisition
Identical MRI sequences were acquired for both cohorts 
(ADB and PREVENT-AD) on a Siemens Trio 3T scanner 
using a 32-channel head coil at the Cerebral Imaging 
Center, associated with the Douglas Research Center in 
Montreal, Canada. Each resulting image for one subject is vi
sualized in Fig. 1A. Acquisition parameters of MRI proto
cols, including T1w, T2w, FLAIR, quantitative T1 (from 
an MP2RAGE sequence) and T2* (from a 12-echo GRE 
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sequence) images are detailed in Supplementary 2. All images 
are 1 mm isotropic or of higher resolution.

Image processing
Brain-derived measures from each MRI sequence are de
tailed in Supplementary Methods 3.

Global atrophy measures
Prior to brain segmentation, we preprocessed the T1w 
images with minc-bpipe (https://github.com/CobraLab/ 

minc-bpipe-library), which performed N4 field inhomogen
eity correction,38 cropping of the neck region and brain 
mask extraction using the BEaST non-local segmentation 
technique.39 Using the preprocessed T1w images, broad tis
sue types were segmented with the MINC Classify tool 
(https://github.com/BIC-MNI/classify). Total brain volume 
(TBV) was calculated as the total volume of grey and white 
matter in mm3. Intracranial brain volume (ICV) was calcu
lated as the determinant of the transformation (i.e. a volume 
scaling) of a skull-to-skull registration of the T1w image to 
the MNI ICBM152 template. We further combined these 

Figure 1 Workflow of MRI acquisitions, processing and analyses. (A) Six types of MR images were acquired and processed. Figures are 
from a 74-year-old female participant with Alzheimer’s disease and high WMH volume. (B) Top: white matter tissue was separated into WMH and 
NAWM. Bottom: both tissue types were parcellated with a periventricular (PV)/deep/superficial white matter (SWM) and lobar parcellation. 
Subject-wise median signal was sampled within each subregion and MRI image. (C) Atrophy measures included global [total brain volume (TBV), 
intracranial brain volume (ICV), TBV/ICV ratio] (top) and cortical thickness measures (bottom). The dimensionality of the vertex-wise cortical 
thickness data was reduced by deriving a data-driven parcellation using non-negative matrix factorization (decomposition process is shown). 
(D) Three types of analyses were performed: (i) correlations of WMH signal measures between themselves; (ii) comparing WMH and NAWM 
signal age- and disease-related trends; and (iii) assessing the relationships of WMH measures with clinically-relevant variables (atrophy, cognition, 
clinical group, cardiovascular risk factors) using univariate and multivariate analyses.
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two metrics by calculating the ratio of TBV to ICV (TBV/ICV 
ratio), representing a global measure proportional to the 
emptiness inside the skull, and thus representing global atro
phy (Fig. 1C).

Cortical thickness
We used the CIVET 2.1.0 pipeline to generate cortical sur
faces from the preprocessed T1w images (Fig. 1C).40,41

Cortical thickness was estimated at each vertex as the 
Laplacian distance between the grey–white matter boundary 
surface and the pial surface. Values were then resampled into 
MNI space and surface smoothed with a 20 mm full-width 
half-max heat kernel.42

To reduce the dimensionality of cortical thickness data, 
we derived a data-driven parcellation using orthogonal pro
jective non-negative matrix factorization (NMF),43-45 fur
ther detailed in Supplementary Methods 4. Briefly, this 
method identifies covariance patterns by deconstructing an 
input matrix of vertices by subjects into two matrices: (i) ver
tices by components (representing the spatial parcellation); 
and (ii) components by subjects (proportional to the cortical 
thickness of every subject inside each component) (Fig. 1C). 
The second matrix is used as the subject-wise measure of cor
tical thickness. The number of components is determined by 
analysing the stability and accuracy of the reconstruction 
across different component granularities. We chose to use 
eight components since the stability plateaued at six compo
nents, while the accuracy increased substantially up to eight 
components.

T1w/T2w ratio processing
The T1w/T2w ratio developed by Glasser et al.21 has been pro
posed as being more myelin-sensitive than either contrast alone. 
To generate the T1w/T2w ratio images, we first downsampled 
the T2w images from 0.64 to 1 mm isotropic and rigidly regis
tered the T2w images to the subject-specific T1w images (to 
have matched resolution and space). We then divided the raw 
T1w images by the matched T2w images, as in Tullo et al.30

WMH segmentation
Before WMH segmentation, non-linear registration of the ADNI 
template to the subject-specific T1w image was performed with 
the Advanced Normalization Tools (ANTs) toolbox.46 WMHs 
were segmented using a validated and automated random forest 
classifier.47,48 We used the preprocessed T1w and T2w images as 
inputs. Despite being classically used for WMH segmentation, 
FLAIR images were not included in our WMH segmentation 
processing because the contrast of grey to white matter of our 
FLAIR images was different to the contrast of the training 
data, which led to a higher rate of false positive WMH segmenta
tions near the cortical grey matter. As a result, it is possible that 
less severe lesions were under-segmented. NAWM masks were 
created by removing the WMH mask dilated by 2 mm from 
the global white matter mask (Fig. 1B).

White matter parcellations
For the main analyses, WMHs and NAWM were parcellated 
into four regions: global, periventricular (PV), deep and 

Table 1 Summary statistics of demographic and cognitive variables before and after quality control (QC) procedures

Before quality control After quality control

Variable Statistic Missing values Statistic Missing values P-values

Total n 253 118
Group (HC, FAMHX, MCI, AD) 82, 78, 63, 30 0 30, 47, 32, 9 0 P = 0.1902
Age 68.0 ± 6.69 (54–91) 1 66.6 ± 6.33 (54–83) 0 P = 0.0531
Sex (male, female) 96, 157 0 42, 76 0 P = 0.7481
BMI 26.5 ± 4.68 1 26.1 ± 4.26 0 P = 0.4235
Years of education 15.0 ± 8.08 5 15.8 ± 3.96 0 P = 0.3187
Number of APOE-ɛ4 alleles (0,1,2) 156, 87, 10 0 75, 37, 6 0 P = 0.7761
AD8 1.2 ± 1.76 11 1.1 ± 1.66 2 P = 0.8080
MoCA 24.7 ± 4.42 5 25.1 ± 3.94 1 P = 0.4015
RBANS attention 98.9 ± 15.76 30 100.3 ± 14.06 10 P = 0.6428
RBANS delayed memory 91.92 ± 18.19 33 91.8 ± 17.71 10 P = 0.5625
RBANS immediate memory 93.9 ± 17.55 31 94.6 ± 16.79 10 P = 0.8791
RBANS visuospatial memory 95.1 ± 15.64 31 94.9 ± 15.74 10 P = 0.6226
RBANS language 97.1 ± 12.55 29 97.6 ± 14.35 9 P = 0.8546
RBANS total 93.8 ± 14.68 33 94.4 ± 14.63 10 P = 0.7784
Alcohol (yes, no) 204, 41 8 103, 12 3 P = 0.1335
Diabetes (yes, no) 17, 227 9 8, 107 3 P = 1
High BP (yes, no) 76, 169 8 31, 84 3 P = 0.4198
High cholesterol (yes, no) 86, 158 9 38, 77 3 P = 0.6501
Smoking (yes, no) 17, 227 9 7, 108 3 P = 0.8842

Mean ± standard deviations are shown for continuous variables, frequencies for categorical variables, and the age range is displayed. The number of missing values for each variable was 
computed. The column of missing values after QC also refers to the number of computationally imputed observations included in the analyses. ANOVAs and chi-squared tests were 
used to assess differences in the samples before and after QC for continuous and categorical variables respectively. P-values of those tests are shown. QC, quality control; HC, healthy 
controls; FAMHX, familial history of Alzheimer’s disease; MCI, mild cognitive impairment; AD, Alzheimer’s disease dementia; BMI, body mass index; MoCA, Montreal Cognitive 
Assessment; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; BP, blood pressure.
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superficial white matter (SWM). While the classical parcella
tion of WMH only segregates PV and deep white matter re
gions, we further differentiated WMHs located in the SWM 
(Fig. 1B). The PV mask was obtained by dilating a mask of 
the ventricles by 8 mm, similarly to other studies.49-52 The 
SWM mask was obtained by dilating the cortical grey matter 
mask by 1 mm. In cases where WMHs were in both PV and 
SWM masks, the WMH was classified as PV. The deep white 
matter mask contained the remaining white matter voxels. 
For the supplementary analyses, WMHs and NAWM were 
parcellated into five regions: global, frontal, parietal, tem
poral and occipital. WMH lobar localization has been 
shown to differentially relate to cognition and dementia.53

To estimate lobe-specific WMH measures, we used non- 
linear registration to map the Hammers atlas54-56 from 
ADNI to native T1w space (Fig. 1B).

WMH measures
In each white matter region (i.e. global and parcellated), we 
derived the WMH volumes as well as six WMH signal mea
sures: T1w, T2w, T1w/T2w ratio, FLAIR, qT1 qT2*. The 
WMH volume was calculated in mm3, divided by TBV, 
and log-transformed, as recommended in previous studies.6

Of note, WMH volumes are highly correlated with visual 
scales like the Fazekas scale, which requires the input of a 
skilled manual rater.57 The use of quantitative volumetric 
measures offers a more accurate and continuous measure 
of WMH burden. Signal measures were derived by calculat
ing the median signal in each region for each MRI contrast. 
Median values were chosen in favour of mean values to limit 
the impact of partial volume effects and outliers on the signal 
measures. These can be particularly impactful in periven
tricular regions where signal values partly sampled in the 
CSF would be important outliers and thus bias the mean sig
nal measures. For quantitative images, we sampled the raw 
intensities. For qualitative images, we sampled intensities 
on the bias-field corrected images that we further normalized 
by dividing by the image-specific median intensity in the genu 
of the corpus callosum (defined by a manually segmented 
mask registered to native space), a region where no WMHs 
were observed in our sample, to limit non-biological sources 
of between-subject intensity differences. Further, raw inten
sities in the genu of the corpus callosum did not correlate 
with WMH volumes for T1w (r = −0.17, P = 0.062), T2w 
(r = −0.06, P = 0.550) and FLAIR (r = −0.04, P = 0.699) 
but did correlate significantly for T1w/T2w ratio (r =  
−0.21, P = 0.017). This could underestimate T1w/T2w ratio 
sensitivity to disease processes.

A low number of subjects had less than five WMH voxels 
in some white matter regions (12 subjects without deep 
WMHs, and 2 subjects without SWM WMHs). Instead of re
moving those subjects, which would bias our sample to
wards subjects with more advanced pathology, we imputed 
WMH volume values by log-transforming 1/TBV since it is 
impossible to divide 0, and WMH signal values by the 
NAWM signal value in the same region for each MRI image 

(e.g. qT1 in deep WMH was replaced by qT1 in deep 
NAWM).

In total, for the PV/deep/SWM parcellation, we included 
28 WMH measures (7 volume and signal measures ∗ 4 re
gions), while for the lobar parcellation, we included 35 
WMH measures (7 volume and signal measures ∗ 5 regions).

The MRI data were also manually checked for lacunes. 
Only one subject presented with a lacune, which did not im
pact the WMH segmentation, hence the WMH signal and 
volume measures of that subject are not impacted.

Statistical analysis
All univariate analyses were performed with R/3.5.1. The 
whole sample, with all clinical groups combined, was ana
lysed together in order to leverage the full variability of 
WMH severity, neurodegeneration and cognitive function
ing across the Alzheimer’s disease spectrum, resulting in 
higher statistical power to detect clinical associations. 
Furthermore, previous research has reported within-group 
associations between WMH volume and cognitive decline 
for cognitively healthy individuals, people with mild cogni
tive impairment and people with Alzheimer’s disease.6

While these studies did not investigate WMH signal mea
sures, they provide confidence that WMH associations 
should not be driven by a group confound.

First, to determine if the WMH signal measures were re
dundant or if they were each sensitive to different sources 
of microstructural variations, we computed cross- 
correlations matrices (P < 0.01 threshold) between the 
WMH characteristics in a within-region between-measure 
fashion, and in a between-region within-measure fashion 
(Fig. 1D).

Second, we sought to assess if the WMH signal trends sim
ply represented deterioration of the global white matter, or if 
these trends were specific to the lesions. We thus calculated 
the divergence of slopes between WMH and NAWM signal 
relative to age and WMH volume, which we interpreted as 
indicators of time and vascular burden, respectively. We 
used linear models with an interaction term (Equations 1
and 2) and thresholded at the P < 0.01 level.

Signal ∼ Age: White matter type (1) 

Signal ∼ WMH volume: White matter type (2) 

Third, to assess the clinical relevance of the microstructural 
variation captured by the different WMH signal measures, 
we used linear models to individually relate WMH measures 
to four types of clinical variables: cortical and global atro
phy, cognition, demographic (including clinical groups) 
and cardiovascular risk factors (Fig. 1D), while covarying 
for age, sex and years of education. We used multiple linear 
regression for continuous clinical variables of interest (e.g. 
atrophy) and ANCOVA for categorical variables of interest 
(e.g. group differences). As such, the group variable is treated 
as a categorical variable and not an ordinal variable. We 
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further assessed the added predictive value above the WMH 
volume for each WMH signal measure by additionally cov
arying for the region-specific WMH volume (e.g. for PV 
qT2*, we added PV WMH volume as a covariate). All con
tinuous variables were Z-scored before analysis to obtain 
standardized beta coefficients. We then examined the 
P-values of the clinical term thresholded at P < 0.01. We fur
ther corrected P-values within the relationship matrix with 
false discovery rate (FDR) correction.58 Relationships that 
survived FDR correction at the 0.1 level were reported. For 
all significant group effects, pairwise differences were inves
tigated post hoc with Tukey contrasts. The standardized beta 
coefficients, 95% confidence intervals, P-values and 
FDR-corrected P-values for all univariate relationships are 
available on our GitHub (https://github.com/CoBrALab/ 
WMH_Signal_AD_OParent_2023).

Fourth, in order to investigate how signal measures of 
WMH are related to demographics and cognition in con
junction with traditional brain markers (i.e. cortical thick
ness and WMH volume), we used the multivariate 
technique partial least squares correlation (PLSC), detailed 
in Supplementary Methods 5 and in Supplementary Fig. 2. 
Briefly, we used behavioural PLSC with the Python/3.9.7 
package pyls/0.01 (https://github.com/rmarkello/pyls), 
which performed singular value decomposition on a correl
ation matrix that relates each brain variable to each cognitive 
and demographic variable.59-62 This results in latent vari
ables (LVs) representing linear combinations of cognitive 
and demographic variables that maximally covary with 
linear combinations of brain variables. We inverted the dir
ectionality of LVs when appropriate for ease of interpret
ation. Of note, diabetes and smoking history variables 
were discarded from this analysis since they did not have 
the required level of variance for PLSC.

Role of the funding sources
Funding sources had no role in the study design, data collec
tion, analysis, interpretation or writing of the manuscript.

Results
White matter parcellations
Results of white matter parcellations are shown in 
Supplementary Fig. 3. In the PV/deep/SWM parcellation, 
the vast majority of WMH voxels were classified as PV 
(86%), relatively few were classified as SWM (11%) and a 
very small fraction were classified as deep (2%). 
Importantly, the median number of voxels included in deep 
WMHs was only 20, potentially rendering the calculation 
of the median signal inside these regions less reliable and 
more influenced by outliers. In the lobar parcellation of 
WMHs (Supplementary Fig. 3B), the most affected region 
was frontal (58%), followed by parietal (17%), temporal 
(13%) and occipital (8%).

Spatially varying and moderate 
correlations between WMH 
measures
The correlations of WMH measures were analysed within- 
region between-measure (Fig. 2A) and between-region 
within-measure (Fig. 2B) with correlations thresholded at 
P < 0.01. Global and PV between-measure relationships 
were highly similar and generally showed low to moderate 
correlations (r < 0.6) with some exceptions of high correla
tions (i.e. WMH volume with qT2* and FLAIR; qT1 with 
T1w). Compared to PV regions, SWM had higher correla
tions between qT2*, qT1 and FLAIR, while in deep white 
matter, correlations were higher between WMH volume, 
T1w, T2w and T1w/T2w ratio.

Subsequently, between-region within-measure relation
ships were analysed (Fig. 2B). For all WMH characteristics 
(volume and signal measures), global and PV regions were 
very highly correlated (r > 0.9). For WMH volume, qT2* 
and FLAIR measures, correlations were highest between glo
bal, PV and SWM regions, and deep regions showed lower 
correlations with other regions. An inverse pattern was ob
served for qT1 and T1w showing higher relationships be
tween deep and SWM regions compared to other region 
pairs. T2w and T1w/T2w ratio measures showed higher cor
relations between SWM and other regions.

qT2* and FLAIR are sensitive 
to WMH-specific tissue  
degradation
We investigated if the WMH signal trends simply repre
sented deterioration of the global white matter, or if these 
trends were specific to WMHs. We calculated the divergence 
of the slopes between WMH and NAWM relative to age and 
WMH volume (Fig. 3A). Results showed significantly differ
ent age- and disease-related signal trends between WMH and 
NAWM for FLAIR and qT2* in every region except deep 
white matter. For FLAIR and qT2*, WMH signal increases 
with age and WMH volume, while NAWM signal remains 
relatively constant (Fig. 3B). For other measures, there is a 
large baseline difference between NAWM and WMH but 
signal trends are highly similar. All significant effects at 
P < 0.01 also survived FDR correction at the 0.05 level.

Consistent univariate relationships 
between WMH qT2* signal and 
clinically-relevant variables
Univariate relationships between WMH measures and dif
ferent types of clinically-relevant variables were assessed, 
statistically controlling for age, sex and years of education. 
In the PV/deep/SWM parcellation (Fig. 4), we observed sig
nificant relationships for WMH volume in global and PV re
gions with atrophy (medial temporal lobe), cognition 
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(MoCA), clinical group and cardiovascular risk factors 
(high BP and cholesterol). Similar relationships were ob
served for PV and global WMH qT2*, more specifically 
with atrophy (medial temporal lobe), cognition (MoCA, 
did not survive FDR correction), clinical group and cardio
vascular risk factors (high cholesterol). While significant 
group effects were observed, there were no significant pair
wise group differences (Supplementary Fig. 4). Other WMH 
measures did not show robust relationships across all types 
of clinical variables. When assessing the added value of 
WMH signal measures above the WMH volume 
(Supplementary Figs 6 and 7), qT2* remained significantly 
associated with atrophy (TBV/ICV ratio), clinical group 
and cardiovascular risk factors (high BP and high choles
terol), but not cognition.

In the lobar parcellation (Supplementary Figs 8 and 9), oc
cipital WMH volume and qT2* were associated with a high 
number of atrophy, cognitive and risk factor variables, as 
well as group effects. WMH volume and qT2* in other lobar 
regions were also associated, although less extensively, with 
atrophy (medial temporal lobe), cognition (MoCA), clinical 
group and cardiovascular risk factors. Other WMH mea
sures did not show robust relationships across all types of 
clinical variables.

When investigating standardized beta coefficients for con
tinuous clinical predictors (Supplementary Figs 5, 7 and 9), 
the directionality of the associations for WMH qT2* and 
WMH volumes is in the expected direction (higher WMH 
volume and qT2* signal are related to lower cognition and 
cortical thickness).

Figure 2 Correlations of WMH measures. (A) Within-region between-measure correlations of all WMH characteristics (volume and signal 
measures). (B) Between-region within-measure correlations. Circles are proportional to the amplitude of the Pearson’s correlation coefficients, 
which are also indicated. Warmer colours indicate positive correlations, and colder colours indicate negative correlations. Only significant 
correlations at P < 0.01 are displayed (n = 118).
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Multivariate relationships between 
brain and non-brain variables
We further investigated multivariate relationships relating 
patterns of brain variables (WMH measures and cortical 
thickness) to patterns of cognitive and demographic vari
ables with PLSC. In the PV/deep/SWM parcellation, LV1 
explained the vast majority of the covariance between vari
ables (83%), was significant (P = 0.0002) and survived 
split-half resampling (Supplementary Fig. 10A). LV3 was 
also significant (P = 0.007) and survived split-half resam
pling but only explained a very small proportion of the co
variance (6%), thus is not further analysed but is available 
in Supplementary Fig. 10B. In LV1, a pattern of older age, 
female sex, lower education level, worst cognition (MoCA, 

AD8, RBANS) and risk factors (high blood pressure, high 
cholesterol) was related to a global pattern of lower cor
tical thickness and higher WMH volume and microstruc
tural abnormality (Fig. 5). More specifically, the highest 
contributors to that pattern of brain variables according 
to the variable-specific bootstrap ratios were decreased cor
tical thickness in Components 5, 3 and 6 (respectively re
presenting superior temporal regions, medial temporal 
lobe and occipital regions) and increased WMH volume 
and qT2* particularly in PV regions. Other WMH signal 
measures that were significant contributors at the bootstrap 
ratio > 3.29 level (equivalent to P < 0.001) were WMH 
qT2* signal in other white matter regions, qT1 signal in 
global and SWM WMHs and FLAIR signal in global and 
PV WMHs.

Figure 3 Comparing signal trends between WMH and NAWM. (A) On the y-axis, all WMH signal measures (global and parcellated) 
are grouped by image type. P-values for the interaction term (modelled with linear regression) between either age (left) and WMH volume (right) 
with white matter type thresholded at P < 0.01 are colour coded, and non-significant associations are in grey. Yellow colours indicate lower 
P-values, and blue colours indicate higher P-values. Blue squares indicate relationships for the age term that are visualized, and black squares 
indicate relationships for the WMH volume term that are visualized. (B) Graphical visualization of NAWM (red) and WMH (blue) signal trends in 
global white matter with age (top) and WMH volume (bottom) for each signal type. Significantly different white matter trends at the P < 0.01 level 
are indicated with a black star (n = 118).
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Similar results were obtained using the lobar parcellation 
(Supplementary Fig. 11), with the first LV explaining the ma
jority of the variance and showing a multivariate pattern of 
lower atrophy and higher WMH volume, qT2*, qT1 and 
FLAIR signal (especially in frontal regions) that is related 
to a pattern of older age, female sex, lower education level, 
worst cognition (MoCA, AD8, RBANS) and risk factors 
(high blood pressure, high cholesterol).

Discussion
qT2* as a potential indicator of tissue 
damage in WMHs
Our primary finding revealed the qT2* relaxation time of 
WMHs as a prime candidate for assessing WMH microstruc
tural damage given the differential signal trends it 

Figure 4 Univariate analyses relating WMH characteristics to clinical variables (PV/deep/SWM parcellation). (A) For each 
number of components of the NMF reconstruction, the stability (red) and the gradient of the reconstruction error (blue) are shown. The selected 
number of components is indicated by the black box. (B) Result of the winner-take-all NMF cortical thickness parcellation. Component 1 (purple) 
represents posterior temporo-parietal regions. Component 2 (blue) represents orbitofrontal, medial-frontal and anterior cingulate regions. 
Component 3 (turquoise) includes the medial temporal lobe and part of the temporal pole. Component 4 (dark green) represents posterior frontal 
regions. Component 5 (light green) represents the superior temporal gyrus and inferior parieto-frontal regions. Component 6 (yellow) represents 
the occipital lobes. Component 7 (red) represents the inferior and middle temporal gyri. Component 8 (orange) represents the sensorimotor 
cortex. (C) On the y-axis, all WMH measures (global and parcellated) are grouped by type of image. On the x-axis, all clinical variables are grouped by 
category. Associations between WMH signal measures and clinical variables were modelled with multiple linear regression for continuous measures 
and ANCOVAs for categorical measures. P-values of relationships between each WMH measure and each clinical variable (correcting for age, sex 
and education) are shown thresholded at P < 0.01, with non-significant associations in grey. Yellow colours indicate lower P-values, and purple 
colours indicate higher P-values. Relationships that survived FDR correction at the 0.1 level are indicated with a black star (n = 118).

10 | BRAIN COMMUNICATIONS 2023: Page 10 of 18                                                                                                          O. Parent et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/6/fcad279/7323596 by Bibliotheque N

ationale et U
niversitaire de Strasbourg user on 17 N

ovem
ber 2023

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad279#supplementary-data


demonstrated relative to NAWM, highlighting a sensitivity 
to tissue deterioration with age and vascular disease above 
what would be expected in the global white matter. We fur
ther observed consistent associations of WMH qT2* with 
cortical atrophy, clinical group differences, cardiovascular 

risk factors and to a lesser extent cognitive performance. 
Importantly, qT2* demonstrated predictive clinical value be
yond WMH volume, highlighting the potentially comple
mentary nature of these two measures to better characterize 
WMH severity. Given the known heterogeneity in the 

Figure 5 Partial least squares correlation analysis relating brain variables to cognition and demographics (PV/deep/SWM 
parcellation). Demographic and cognitive variables are shown in purple, atrophy variables in red, WMH variables in blue and non-significant 
variables in grey. Top: For each demographic and cognitive variable, the loading on LV1 is proportional to the correlation coefficient on the x-axis. 
95% confidence intervals are shown, and variables contribute significantly to the LV (green) if the confidence interval does not cross 0. Bottom: For 
each brain variable, the bootstrap ratio (BSR) is proportional to the width of the bar on the x-axis. The variables are ordered from top to bottom by 
BSR value magnitude. Vertical lines at BSR ± 3.29 (equivalent to P < 0.001) indicate the significance thresholds (n = 118).
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microstructural underpinnings of WMHs, qT2* could add 
crucial clinically-relevant and prognostic information when 
assessing the overall WMH burden.

Early in the process of WMH genesis, tissue alterations 
mostly represent accumulations of interstitial water content 
(i.e. oedema) due to disruptions in the blood–brain barrier.63

Following tissue damage includes inflammation,64,65 demye
lination, axonal loss15,19,66 and death of oligodendrocytes.67

While a large portion of the qT2* signal can be attributed to 
variations in interstitial water content (positive associ
ation),68 studies demonstrated roughly equal contributions 
of iron (negative association) and myelin (negative associ
ation) to the qT2* signal in healthy white matter.26 Since 
most of the magnetic susceptibilities in white matter stems 
from paramagnetic iron, which is mostly localized in oligo
dendrocytes,69 a reduction in iron and magnetic susceptibil
ities likely indicates the death of oligodendrocytes. 
Integrating these known WMH microstructural alterations 
and sources of qT2* signal, we hypothesize that the increase 
of qT2* in WMHs is caused by a combination of increasing 
interstitial water content and decreasing myelin sheath and 
oligodendrocyte density. While qT2* might be less specific 
to any one of these microstructural properties compared to 
other quantitative MRI measures, it could be sensitive to a 
unique combination of these properties that best captures 
the overall severity of WMH tissue damage, thus resulting 
in the higher clinical associations we observed. Of note, the 
presence of microbleeds (another MRI-detectable conse
quence of small vessel disease) is likely not contributing to 
the qT2* effects we observed, even if they were located with
in WMHs, since they decrease the qT2* signal.

Only a limited number of studies have investigated 
T2-related properties of WMHs. Iordanishvili et al.70 ob
served a significant increase in PV qT2* with WMH volume, 
an effect that was not observed for NAWM, which supports 
our observations. One study used myelin water imaging, 
which separates the quantitative T2 signal into a short (mye
lin water sensitive) and long component (interstitial water 
sensitive), to investigate tissue alterations within WMHs.71

They observed that the myelin water fraction decreased 
with WMH volume and was lower in stroke populations, 
while the intra- and extra-cellular water fraction increased 
with WMH volume and was not different between stroke 
and normally-aging populations. Crucially, we extended 
this body of work by empirically demonstrating associations 
of the WMH qT2* signal with adverse neurobiological and 
clinical outcomes.

Interestingly, the clinical associations we observed were 
mostly for the qT2* signal in PV and occipital WMHs, sug
gesting that the location of damage is critical. PV WMHs 
have been more extensively associated with clinical outcomes 
but tend to represent a lower degree of demyelination com
pared to other WMHs.6,16,17 Similarly, studies show that 
the clinical impact of WMHs located in posterior regions 
(i.e. occipital and parietal lobes) is particularly significant in 
Alzheimer’s disease.4,53,72 As such, microstructural tissue 
damage of WMHs located in PV and occipital white matter 

regions, measured by the qT2* signal, could be particularly 
disruptive for cognitive processes and have a higher clinical 
impact. Alternatively, qT2* may be particularly sensitive to 
the tissue damage dynamics of WMHs in those regions.

Limited clinical relevance of other 
signal measures of WMHs
Other signal measures of WMHs did not meet our criteria for 
clinical relevance since they did not show consistent associa
tions with all categories of clinical variables and/or did not 
show divergent signal trends compared to NAWM.

We did not observe significant univariate relationships of 
WMH qT1 with cognition, atrophy and demographic vari
ables, but we did observe significant univariate relationships 
with high cholesterol, as well as significant contributions of 
WMH qT1 to a multivariate pattern of age and cognition. 
qT1 in NAWM has been associated mostly with myelin 
(negative association) to a much larger extent than iron,26

and is highly influenced by interstitial water density (positive 
association).73 Interestingly, while the overall qT1 signal was 
different between WMH and NAWM, we observed that sig
nal trends in aging and disease were highly similar, with sig
nal in both regions slightly increasing with age and WMH 
volume. This can be explained by one of two possible me
chanisms. First, although it is possible that the relationship 
between qT1 relaxation time and myelin does not hold in 
WMH tissue, Gouw et al.18 observed that the WMH qT1 sig
nal was independently related to histologically-determined 
markers of myelin loss, but also axonal loss and microglial ac
tivation. The second possible explanation could imply the 
same rate of demyelination in WMHs and NAWM. 
Numerous studies have shown that myelin and qT1 altera
tions are widespread in the NAWM of patients with small 
vessel disease.18,63,74,75 We hypothesize that the initial in
crease in qT1 is due to oedema and that further qT1 increases 
might indicate a progressive loss of myelin sheaths that occurs 
at similar rates in WMH and NAWM. Nonetheless, we argue 
that, based on our results, qT1 is not a sensitive measure of 
microstructural tissue alterations specific to WMH.

While the WMH FLAIR signal showed highly divergent 
trends compared to NAWM, we observed few univariate re
lationships with clinical variables and some contributions to 
a multivariate pattern of aging and cognition. One study in
vestigated microstructural substrates of FLAIR and T2w sig
nal in WMHs and did not find associations between the 
intensity (i.e. brightness) of WMHs on these two images 
and the degree of axonal and myelin degradation.66 Since 
FLAIR, T1w, T2w and T1w/T2w ratio are qualitative MRI 
images and are thus more impacted by non-biological 
sources of variation, it is possible that this added noise com
pared to quantitative MRI limits the detectable associations 
with clinical variables and histopathological markers. 
Nevertheless, qT1 and FLAIR signals could potentially be 
of value in assessing the WMH microstructural damage gi
ven their multivariate relationships with clinical variables. 
Since FLAIR is not too highly correlated with qT2* signal 
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(especially in PV regions), it could explain different sources 
of microstructural variations.

The clinical relevance of T1w, T2w and T1w/T2w ratio 
measures of WMH severity appears to be limited. Signal 
trends from all these measures were mostly not significantly 
different between WMH and NAWM, and we observed very 
few univariate and multivariate relationships with clinical 
variables. In contrast, some studies have used WMH T1w 
signal as a measure of WMH severity with the rationale 
that, since WMHs appear consistently smaller on this type 
of image, it could potentially be sensitive to more advanced 
tissue damage and demyelination.76 One study reported ac
celerated WMH T1w signal change after conversion from 
MCI to dementia, an effect that was not observed for 
WMH volume.49 This discrepancy with our findings could 
be due to differences in the samples: Dadar et al.49 used a lon
gitudinal sample of 178 MCI subjects who converted to de
mentia, while our study was cross-sectional and only 
included 9 participants with dementia. As such, the T1w in
tensity could be especially sensitive to WMH severity in par
ticipants with more advanced neurodegeneration and small 
vessel disease. Still, our observations clearly show that other 
signal measures, such as qT2*, are more sensitive to WMH 
microstructural tissue damage.

Clinical associations of increased 
WMH volumes
Our results largely recapitulate previously reported associa
tions of WMH volume with clinical variables. Our observed 
associations between WMH volume and medial temporal 
lobe cortical thickness add to the growing body of literature 
suggesting that WMHs are associated with the stereotypical 
pattern of neurodegeneration in Alzheimer’s disease.9,10,77

Univariate relationships between WMH volume and cogni
tion were less widespread than previously reported,6,7 as as
sociations were restricted to MoCA scores and PV WMH 
volume, although additional relationships between occipital 
WMH volume and RBANS subscales (immediate memory, 
language and global cognition) were uncovered using a lobar 
parcellation. While we observed significant overall clinical 
group differences with respect to WMH volume, there 
were no significant pairwise group differences in the PV/ 
deep/SWM parcellation. This is possibly due to a lack of 
power from the small number of participants with 
Alzheimer’s disease included in the final sample (n = 9), 
which possibly leads to an underestimation of the pathology 
level in our targeted population. Lastly, our observed asso
ciations between WMH volume and hypertension are con
sistent with the literature.12,14

Separating WMHs located in deep 
and SWM regions
While the classical WMH parcellation only segregates peri
ventricular and deep white matter regions, we differentiated 
WMHs located in the SWM, which we defined as 1 mm from 

the cortical grey matter. SWM is mostly composed of associ
ation U-fibres connecting cortical gyri and sulci and is 
thought to be relatively protected from vascular dysfunction 
since it is doubly vascularized,78,79 although WMHs located 
in SWM regions have been sparsely studied.49 However, we 
observed that there were more WMHs in SWM than in the 
deep white matter. This is possibly explained by the fact 
that the total SWM region was the largest on average, repre
senting ∼47% of the total white matter in our parcellation 
scheme (Supplementary Fig. 3). Still, our results do not sup
port reports of vascular protection of SWM since the major
ity of WMH voxels not in periventricular regions were 
within 1 mm of cortical grey matter.

Strengths and limitations
The greatest strength of our study is our sample of partici
pants across the Alzheimer’s disease spectrum, resulting in 
a higher degree of variability in WMH severity, neurodegen
eration and cognitive functioning, thus increasing statistical 
power. Our sample is also well-suited for comparing signal 
measures of WMH since it included five different types of 
structural MRI acquisitions.

However, our study’s limitations include a somewhat lim
ited sample size to detect associations between brain and 
clinical variables that are generally of small effect sizes, part
ly caused by a lack of phenotypical reliability of diagnostic 
and cognitive measures.80,81 This is why we used a stringent 
criterion to determine clinical relevance (i.e. consistent rela
tionships across types of clinical variables, white matter par
cellations and univariate and multivariate analyses). Despite 
the moderate sample size, qT2* clearly showed robust asso
ciations with neurobiological and clinical variables, and the 
fact that we observed highly similar clinical effects of WMH 
volumes with previous findings in the literature brings confi
dence to the generalizability of our results. Still, smaller asso
ciations of other WMH signal measures might not have been 
detected due to a lack of power.

One technical limitation is that no inhomogeneity correc
tions for quantitative images were used in this paper. While 
qT1 maps are not influenced by B1−, proton density, and 
T2* effects,82 several approaches to correct B1+ field inho
mogeneities have been proposed83,84 but these require add
itional acquisitions, which we did not have access to. 
Additionally, while qT2* has been shown to be dependent 
on the orientation of white matter fibres with respect to the 
main magnetic field B0,85,86 no correction was used in the 
present paper. Furthermore, while it was necessary to nor
malize the intensities of weighted MRI images, our reference 
region (the genu of the corpus callosum) showed significant 
associations with WMH volume for the T1w/T2w ratio 
measure. This further highlights the advantage of quantita
tive MRI images in assessing tissue properties.

We did not include signal measures from diffusion tensor 
imaging (DTI), which are traditionally used to assess white 
matter integrity. Studies show that the DTI-derived micro
structure within WMHs scales with WMH volume,63,71
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and is associated with gait disturbances87 and cardiovascular 
risk factors.88 Reports have demonstrated that DTI altera
tions are detectable before the area appears hyperintense 
on FLAIR images, thus possibly being sensitive to early tissue 
alterations of WMHs, and show divergent longitudinal 
changes compared to NAWM.89,90 Hence, DTI metrics 
also show potential as signal measures of WMH tissue dam
age severity.

Lastly, it is not clear if our findings are generalizable out
side of the Alzheimer’s disease spectrum. While some studies 
show generally similar microstructural substrates of WMHs 
between patients with and without Alzheimer’s disease,15

others report that some WMHs in Alzheimer’s disease are 
caused by cortical Alzheimer’s disease pathology through 
Wallerian degeneration and not small vessel disease, espe
cially for WMHs located in parietal regions.19 However, 
our sample only contained a small number of subjects with 
Alzheimer’s disease (n = 9).

Future directions
It will be important in future studies to assess the biological 
sources of the pathological increase of qT2* in WMHs, for 
example by relating the WMH qT2* signal to post-mortem 
histological markers of myelin and iron, as well as immuno
histochemistry markers of ischaemia, blood–brain barrier 
dysfunction and inflammation. Future studies should also as
sess if the WMH qT2* signal is also clinically-relevant in dif
ferent populations outside of the Alzheimer’s disease 
spectrum with high WMH prevalence, such as pure vascular 
dementia, psychiatric disorders and normal pressure 
hydrocephalus.16

An important potential use for assessing the degree of 
microstructural damage inside WMHs is to determine which 
WMHs represent irreversible tissue damage (i.e. myelin and 
axonal loss), or potentially reversible tissue damage (i.e. oe
dema). Indeed, a growing body of literature reports WMH 
volume reductions in some participants.91 Given that the 
rate of WMH volume change is associated with modifiable 
cardiovascular risk factors,91 it would be particularly rele
vant to identify if the WMHs of a patient could be reversible 
following cardiovascular interventions such as hypertensive 
medication, change in diet and increased physical activity. 
WMH signal measures, particularly qT2* but also possibly 
qT1 and FLAIR, could potentially add critical information 
in that regard, and as a result, could play a role in personal
izing intervention strategies.

In summary, we assessed for the first time the clinical sig
nificance of qualitative and quantitative MRI WMH signal 
measures by relating them to cortical and global atrophy, 
cognition, clinical group along the Alzheimer’s disease spec
trum and cardiovascular risk factors. We discovered that 
qT2* is a relevant marker of WMH microstructural damage, 
as it showed sensitivity to WMH-specific tissue degradation 
and was consistently associated with all types of clinical vari
ables across different analysis schemes. qT1 and FLAIR 
could also be of interest, although to a lesser extent 

according to our results. We conclude that combining volu
metric and signal measures of WMH should be used to im
prove the characterization of WMH severity in vivo.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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